The effects of the compound of the group of substituted 5R1, 6R2-1,3,4-thiadiazine-2-amines on the course of systemic inflammation

P.A. Sarapultsev1, O.N. Chupakhin2, A.P. Sarapultsev1, M.A. Rantsev1, S.U. Medvedeva1, L.P. Sidorova1, I.G. Danilova1

1Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg;
2The I.J. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg;
3Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg

The purpose of the study was to evaluate the effect of compounds from the group of substituted 5R1, 6R2-1,3,4-thiadiazine-2-amines on systemic inflammation with syndromes SIRS, MODS and CARS. As a model of necrotizing pancreatitis, the author's modification of the experimental ligation model in rats was used. The concentration of cytokines was determined 24 hours after the start of the model of pancreatic necrosis. Results. Administration of the compound L-17 significantly reduced the severity of systemic inflammatory response syndrome (SIRS), reducing the level of inflammatory cytokines. The 3-fold decrease in the level of IL-10 by the compound L-17 has influenced the development in experimental animals of compensatory anti-inflammatory response syndrome, which was confirmed by the absence in treated animals of septic foci and peritonitis on days 5–7. Thus, the data demonstrate the ability of the compound L-17 from the group of substituted 5R1, 6R2-1,3,4-thiadiazine-2-amines to reduce or prevent the development of the manifestations of systemic inflammation. (Cytokines and Inflammation. 2013. Vol. 12. № 3. P. 40–44.)

Key words: 1,3,4-thiadiazine-2-amine, systemic inflammation, interleukins, experimental pancreatic necrosis.